Все расчёты ведутся с применением метода конечных элементов (МКЭ). При этом между трёхмерной моделью изделия и расчётной конечно-элементной моделью поддерживается ассоциативная связь. Параметрические изменения исходной твердотельной модели автоматически переносятся на сеточную конечно-элементную модель.
Структурно T-FLEX Анализ организован по модульному принципу, что позволяет пользователю гибко подойти к комплектации рабочего места расчётчика. В зависимости от решаемых задач, пользователь может выбрать один или несколько расчётных модулей.
Состав расчетных модулей:
- Статический анализ
позволяет производить расчёт напряжённо-деформированного состояния конструкций под действием приложенных к системе постоянных во времени нагрузок. Учитываются напряжения, возникающие по причине температурного расширения/сжатия материала. По результатам расчета оценивается прочность конструкции, определяются наиболее уязвимые места конструкции. - Частотный анализ
позволяет осуществлять расчёт собственных (резонансных) частот конструкции и соответствующих форм колебаний. Результаты используются для повышения надёжности и работоспособности изделия в условиях, исключающих возникновение резонансов. - Анализ устойчивости
позволяет оценить запас прочности и формы потери устойчивости по критической нагрузке. Критическая нагрузка, при которой конструкция может потерять устойчивость, и форма потери устойчивости позволяют оптимизировать конструкцию путём изменения геометрических параметров, либо создания дополнительных рёбер жёсткости. - Анализ усталостной прочности
позволяет оценить прочность материала при действии переменных нагрузок. По результатам анализа делается заключение об усталостной прочности конструкции при заданном цикле нагружения. - Вынужденные колебания
позволяет получить зависимости отклика системы от частоты вынуждающих воздействий – силовых и/или кинематических – изменяющихся по гармоническому закону с учетом (или без) демпфирования системы. По результатам расчёта для диапазона частот могут быть получены зависимости амплитуд и виброускорений от частоты вынуждающих воздействий, что важно при оценке виброустойчивости системы в заданном диапазоне частот. - Тепловой анализ
Предназначен для решения задач теплопроводности и теплопередачи, обеспечивая возможность оценки температурного поведения изделия под действием источников тепла и излучения.
Порядок работы
Типичный порядок работы расчётчика с системой T-FLEX Анализ состоит из нескольких этапов.
На первом этапе необходимо построение трёхмерной модели изделия в T-FLEX CAD. Модель может быть импортирована из сторонней системы проектирования.
На втором этапе необходимо осуществить генерацию сеточной конечно-элементной модели изделия с помощью модуля Препроцессора T-FLEX Анализ. Генерация сеточной модели предусматривает создание конечно-элементной сетки, отражающей геометрию изделия и наложения граничных условий, определяющих физическую задачу, подлежащую решению.
T-FLEX Анализ ориентирован на решение физических задач в объёмной постановке. Геометрию анализируемой детали в этом случае удобнее всего описывать тетраэдальным конечным элементом, поэтому Препроцессор T-FLEX Анализа ориентирован на автоматическое построение тетраэдальных конечно-элементных сеток. Тетраэдальная сетка позволяет достаточно точно аппроксимировать сколь угодно сложную произвольную геометрию изделия, и поэтому часто используется для объёмного МКЭ анализа. Препроцессор T-FLEX Анализ позволяет строить сетки из тетраэдальных конечных элементов двух типов – четырехузловых тетраэдров и десятиузловых тетраэдров.
В T-FLEX Анализе предусмотрены специальные команды, позволяющие в интерактивном режиме задать внешние воздействия, прикладывая их непосредственно к элементам твердотельной модели. Препроцессор автоматически переносит граничные условия на конечно-элементную модель для выполнения расчёта.
Третий этап осуществления расчётов выполняется модулем Процессора T-FLEX Анализ. В Процессоре осуществляется генерация расчётных систем уравнений и их решение. Результатами работы конечно-элементного Процессора являются значения искомых целевых функций, например, перемещения и напряжения при статическом анализе, или собственные частоты и формы колебаний при частотном.